

The Leader in Feedstock Flexible Ethanol

US DOE - Biomass 2009

Bill Roe President & CEO Coskata, Inc.

Flex Ethanol will involve several technologies

DOE is targeting 2 major pathways for cellulosic biofuels

Biomass

- Energy crops
- Residue harvesting

Biochemical Conversion

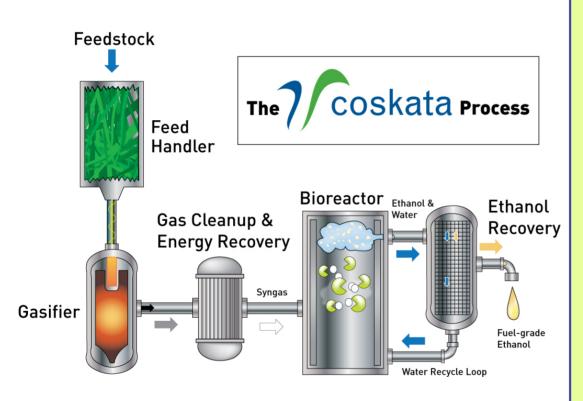
- Enzymatic hydrolysis
- Fermentation

Thermochemical Conversion

- Gasification
- Catalysis

Products

- Fuels
- Power
- Bio-products


7 coskata

Coskata's Hybrid
Gasification +
Fermentation
(thermo-biological)
technology
combines the best
of both routes

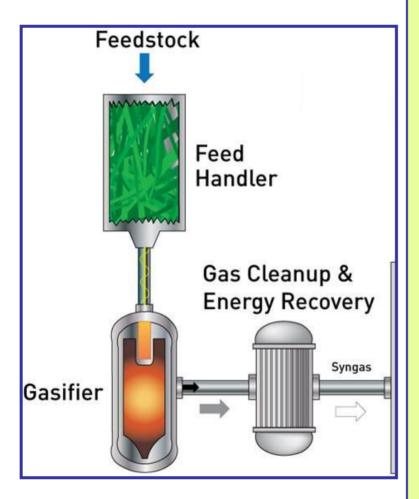
Coskata has the leading Flex Ethanol™ technology

Flexible

- Wide variety of feedstocks
- Geographic diversity

Efficient

- Yields over 100 gal/ ton dry biomass
- Produces only fuel grade ethanol


Affordable

 Competitive unsubsidized at oil price of ~\$70/bbl

Coskata's process is feedstock flexible by design

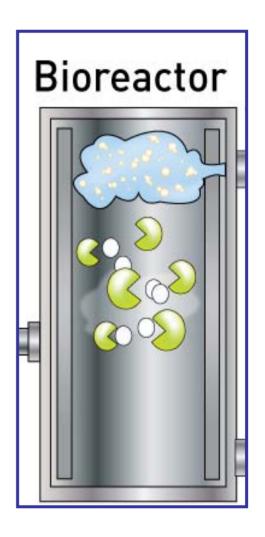
Gasification converts carbonaceous feedstock into syngas:

- Municipal trash (construction and demolition waste, hurricane debris, plastic, tires)
- Ag wastes (corn stover, bagasse, wheat straw, many more)
- Wood and wood residues
- Sustainable energy crops

Other gas streams can also be converted to ethanol:

- Steel mill waste gas
- Landfill methane gas
- Anaerobic digester gas (manure, current corn ethanol, waste treatment)

Coskata's proprietary technology drives efficiency



Microorganisms utilize the chemical energy of the syngas to selectively produce ethanol

Proprietary **microorganisms** consume both CO and H2, allowing efficient conversion across the range of H2:CO ratios

6 CO + 3 H20 → C2H5OH + 4 CO2 6 H2 + 2 CO2 → C2H5OH + 3 H20

Proprietary bioreactor designs encourage maximum productivity

Proprietary microorganisms and bioreactor designs

- Anaerobic strains of bacteria originally found in nature have been further developed to perform at the productivity, selectivity, and ethanol tolerance levels needed for process commercialization
- Trace nutrients have been identified and minimized through strain development

- Several bioreactor designs have been developed that optimize the mass transfer of syngas for conversion
- First commercial plants will employ suspended cell bioreactor designs, while a design employing stationary cells will offer additional advantages in later facilities

Coskata's productivity shows readiness for commercialization

Best case economics (compete with gasoline)

Base case economics (commercial viability)

Minimum economic threshold (corn)

Coskata has achieved target microbe productivity levels

Sandia National Labs study - Key assumptions for biofuels

Biofuels conversion technologies

Capital cost per gallon capacity Yield of ethanol per biomass ton input

Biochemical

2010: \$6.16/gal 60 gal/dry ton 2020: \$3.30/gal 88 gal/dry ton

Thermochemical

2010: \$6.00/gal 75 gal/dry ton 2020: \$4.00/gal 105 gal/dry ton

Biothermal

2010: \$5.00/gal 90 gal/dry ton 2020: \$3.00/gal 105 gal/dry ton

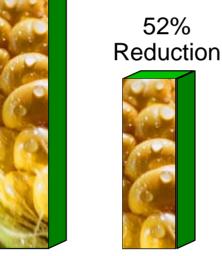
7 coskata

- Continued <u>R&D</u>
 needed to *improve* conversion yields
- Commercialization support could shrink timeframes to maturity
- Both could *lower* capital costs
 significantly

Cellulosic ethanol reduces GHGs even further

DOE analysis targets GHG reduction from ethanol

28% Reduction


Gasoline

Petroleum

Current Average

Natural Gas

Biomass

Corn Ethanol

78% Reduction

Sugarcane **Ethanol**

Biomass

86% Reduction

Cellulosic **Ethanol**

Biomass

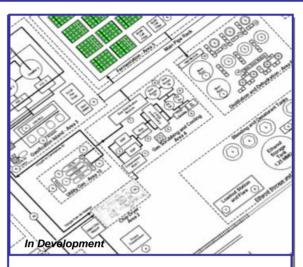
Up to 96% Reduction*

Biomass

Coskata is aggressively commercializing

Horizon (Q1 2008)

Integrated Processing Warrenville, IL


 Integrated processing system with methane thermal reformer, multiple bioreactor designs, and distillation

Lighthouse (2009)

Commercial Demonstration Madison, Pennsylvania

- Minimum engineering scale (linear scale-up to commercial production)
- Front-end biomass gasifier
- Will test multiple commercialscale bioreactor and separations designs

Flagship (TBD)

Commercial Production Location: Southeast US

- Advantaged site selected
- 50-60 MM Gallons / yr
- Multiple gasifiers that process
 ~1500 dry tons/day of biomass
- Cost competitive with gasoline, unsubsidized, at ~\$70/bbl oil

Semi-scale facility proceeding on schedule

Project Lighthouse

- Semi-scale facility in Pennsylvania
- Will demonstrate integrated operation of The Coskata process with gasification
- Will demonstrate industry leading gal/dry ton conversion with multiple bioreactor and separations designs

Coskata has a flexible commercialization strategy

License

- License technology to development partners including
 - Feedstock suppliers
 - Chemical manufacturers
 - Petroleum companies
 - Ethanol distributors/blenders
 - Project developers
- Enables rapid scale up of technology
- Establishes Coskata as the industry enabler

Own

- Encourages continual process improvements
- Allows Coskata to capture full economic benefits of its technology

Government policy can help jumpstart Flex Ethanol

Make existing programs work

Many programs exist but are not effective in current financial market

- Loan guarantees require lenders and limits on review periods and fees
- Cellulosic ethanol tax credits are more effective as refunds or direct payments
- Grants for all scales of commercialization (not just R&D)

Invest in whole supply chain

Investments in up- and down-stream supply chain infrastructure are needed

- Biomass crop supply chains
- Distribution and vehicle infrastructure (including E15, E20 and higher blends)

Enact carbon legislation

Straightforward carbon legislation

- Lifecycle analysis based on sound science and direct, measurable effects
- Credits for all technologies that lower GHG's

The Leader in Flex Ethanol™